
3. Data Models for Engineering Data

Conventional and Specific Ways to
Describe Engineering Data

Schallehn: Data Management for Engineering Applications

Overview

• Conventional Models
– Overview of Data Models

– Logical Models
• Databases and the Relational Data Model

• Object-oriented Data Models

• Semi-structured Data Models

– Conceptual Models
• The Entity Relationship Model (ER)

• The Unified Modeling Language (UML)

• Engineering Data Models
– The Standard for the Exchange of Product Model Data (STEP)

• STEP EXPRESS as a modeling language

• EXPRESS-G as a graphical/conceptual model

– STEP files

Reminder: Data Model

• A data model defines syntax and semantics, i.e.

– How can data be structured (syntax)

– What does this structure mean (semantics)

• Very generic term for many applications

– Programming languages have their data models (e.g. C++ and Java have
object-oriented data models)

– Conceptual design methods (e.g. ER, UML) represent a data model

– File formats either apply a data model (e.g. XML) or implement their own

– Database management systems implement data(base) models

Schallehn: Data Management for Engineering Applications

A data model is a model that describes in an abstract way how data

is represented in an information system or a database management
system.

Information System Design Phases

Schallehn: Data Management for Engineering Applications

Requirements
Analysis

Conceptual
Design

Logical Design

Physical
Design

Implementation

Conceptual Models:
ER, UML, EXPRESS-G

Logical Models:
Relational, Object-oriented,
Document-oriented, EXPRESS

Physical Models:
SQL-92, SQL:2011,
XML, JSON, C++,
Java

Types of Data Models

• Conceptual Models
– Describing the concepts of the given Universe of Discourse and their

relationships

– Information requirements of system/users

– Independent of final structure implementation

– Often using graphical notation

• Logical Models
– Describes the logical structure of information (data) in the system to

be developed

– Independent of specific (database) systems or (programming)
languages

• Physical/Implementation Models
– Describes all details of how information is represented

Schallehn: Data Management for Engineering Applications

The Relational Model (RM)

• Developed since early 1970s based on mathematical theory of
relations and operations performed on them (relational
algebra)

• SQL (Structured Query Language) as a strong standard to
access relational databases

• Relational Database Management Systems (RDBMS)
implement RM, most often based on SQL

• RDBMS are state of the art for database storage

Schallehn: Data Management for Engineering Applications

SQL/RM: Basic Concepts

• Data is stored as rows/records (tuples*) in tables
(relations) with values for each column (attribute)

• Rows can be identified by special columns called
primary keys, for which a unique value must exist

• Foreign keys can be used to establish connections
across data in different tables

• Constraints can be specified to grant consistency

Schallehn: Data Management for Engineering Applications

* Terms in brackets relate to
 relational theory/mathematics

SQL/RM: Simple Example

Schallehn: Data Management for Engineering Applications

PartID Name Weight SupplierID

GT-876-140425 Plunger 143.5 1

FT-852-130707 Shaft 77.0 3

FT-855-140809 Bolt 15.7 1

TT-707-778 Case 22.8 2

SupplierID Name Location

1 Reed & Sons New York

2 CaseStudio Boston

3 ToolTime Austin

SQL/RM: Tables

Schallehn: Data Management for Engineering Applications

PartID Name Weight SupplierID

GT-876-140425 Plunger 143.5 1

FT-852-130707 Shaft 77.0 3

FT-855-140809 Bolt 15.7 1

TT-707-778 Case 22.8 2

Table

Row

Column

SQL/RM: Primary Keys

Schallehn: Data Management for Engineering Applications

PartID Name Weight SupplierID

GT-876-140425 Plunger 143.5 1

FT-852-130707 Shaft 77.0 3

FT-855-140809 Bolt 15.7 1

TT-707-778 Case 22.8 2

Primary Key Value

Primary Key

SQL/RM: Foreign Keys

Schallehn: Data Management for Engineering Applications

PartID Name Weight SupplierID

GT-876-140425 Plunger 143.5 1

FT-852-130707 Shaft 77.0 3

FT-855-140809 Bolt 15.7 1

TT-707-778 Case 22.8 2

SupplierID Name Location

1 Reed & Sons New York

2 CaseStudio Boston

3 ToolTime Austin

Foreign Key

The Structured Query Language (SQL)

• Language to access databases structured according
to Relational Model

– Developed based on RM

– Introduces some minor differences to RM

– Not a programming language

• Consists of several parts, most importantly:

– Actual query language to read data

– Data Definition Language (DDL) to create (empty)
databases, tables, etc.

– Data Manipulation Language (DML) to insert, modify and
delete data

Schallehn: Data Management for Engineering Applications

SQL: Query Language

Schallehn: Data Management for Engineering Applications

SELECT <columns>

FROM <tables>

WHERE <condition>;

• Declarative language:
– Result is described, not how it is computed

– Actual execution can be optimized by DBMS

• Typical structure: SFW-block (SELECT-FROM-WHERE)

• Input as well as result are always tables

• Used from programming languages via standardized or
proprietary application programming interfaces (ODBC, JDBC,
etc.)

SQL: Query Language Example 1

Schallehn: Data Management for Engineering Applications

SELECT name, weight

FROM part

WHERE weight > 50;

Name Weight

Plunger 143.5

Shaft 77.0

SQL: Query Language Example 2

Schallehn: Data Management for Engineering Applications

SELECT p.name, s.name

FROM part p, supplier s

WHERE p.supplierid = s.supplierid

 AND s.name LIKE ‘Reed%’;

Part.Name Supplier.Name

Plunger Reed & Sons

Bolt Reed & Sons

SQL: Data Definition Language

• DDL= Part of SQL language used to define schema elements
(tables, constraints, views, etc.)

Schallehn: Data Management for Engineering Applications

CREATE TABLE part (

 partid INTEGER PRIMARY KEY,

 name VARCHAR(50) NOT NULL,

 weight DECIMAL(10,2),

 supplierid INTEGER REFERENCES supplier(supplierid)

);

SQL: Data Manipulation Language (DDL)

• DML = Part of SQL language to insert, modify and delete data

Schallehn: Data Management for Engineering Applications

INSERT INTO supplier VALUES (4,’Rex & Smith’, ‘Baltimore’);

UPDATE supplier

SET location=‘Woburn’

WHERE supplierid=2;

DELETE FROM part

WHERE supplierid=1;

Engineering and RDBMS

• RDBMS often used for

– Product Lifecycle Management (Product Data
Management, Engineering Data Management)

– Applications for generic tasks, e.g. Enterprise Resource
Planning, Workflow Management Systems, Supply Chain
Management, etc.

• RDBMS less often or not used for

– Direct structured storage of product definition data

• Details in Section 4

Schallehn: Data Management for Engineering Applications

Object-oriented Data Models

• Enhanced semantic modeling
– Allows more flexible and re-usable definitions

– More semantic concepts add complexity to data model/languages

• Developed gradually until major breakthrough in 1980s

• Similar concepts of data modeling applied for numerous
application fields in computer science, e.g.
– Object-oriented Analysis and Design (e.g. UML)

– Object-oriented Programming (e.g. C++, Java)

– Object-oriented Databases (e.g. db4o, Versant)

– Object-relational Databases (SQL since SQL:1999)

– Object-oriented User Interfaces

Schallehn: Data Management for Engineering Applications

OO: Enhanced Semantic Modeling

• Objects as instances (data) of classes

• User-defined Classes as definitions (schema) of
– The structure of objects with Attributes and Relationships

– The behavior of objects by Methods (class functions)

• Encapsulation to differentiate between appearance to use
user of objects of classes (interface) and their internal
structure and behavior (implementation)

• Re-usability of definitions by Specialization among classes
– Inheritance: specialized classes (subclasses) also posses the attributes,

relationships and methods of the classes they were derived from
(superclasses)

– Polymorphism: objects of a subclass are also objects of the superclass
and can be used accordingly

 Schallehn: Data Management for Engineering Applications

OO: Attributes

• Attributes represent properties of
objects of a class, for which an
object carries concrete values

• Defined based on data types

– Basic data types defined of
implementation model (e.g.
int, float, char in C++)

– Pre-defined complex types (e.g.
string in C++)

– User-defined complex types (e.g.
classes for Address, Date,
Coordinates, etc.)

Schallehn: Data Management for Engineering Applications

class Part

{

 ...

 string name;

 int version_id;

 Date lastModified;

 ...

};

This and all following
examples on OO are in C++

OO: Methods

• Specification of behavior of objects in
terms of functions on that object

• Interface (Signature, declaration):

– Specifies how the method can be used

– External view of the method

– Name, parameters and return value

• Implementation (definition):

– Provides executable source code for
method

– Internal view of the methode

• Interface and implementation
may be separated (e.g. in C++)

• Constructors as special methods to
create objects of that class

Schallehn: Data Management for Engineering Applications

class Part

{

 ...

 Part(string n);

 void createNewVersion();

 ...

};

...

Part::Part(string n)

{

 name = n;

 version_id = 1;

}

void Part::createNewVersion()

{

 version_id++;

}

OO: Relationships

• 1:1 and N:1 Relationships
between different objects
most often represented by
pointers (physical address,
e.g. C++) or references
(logical, e.g. Java)

• Bidirectional, 1:N and N:M
relationships require
additional type construction

Schallehn: Data Management for Engineering Applications

class Part

{

 ...

 Engineer* responsibleEngineer;

 ...

};

class Engineer

{

 ...

 string name;

 string department;

 set<Part*> designedParts;

 ...

};

OO: Encapsulation

• External (interface) and
internal (implementation)
structure of class maybe
specified

• Typically access modifiers
such as
– Public: attribute or method

accessible from everywhere

– Private: only accessible within
methods of this class

– Protected: accessible within
this class and in subclasses

– Package (Java only): within
this library

Schallehn: Data Management for Engineering Applications

class Part

{

 public:

 Part(string n);

 void createNewVersion();

 private:

 string name;

 int version_id;

 Date lastModified;

 Engineer*

 responsibleEngineer;

};

OO: Objects and Classes

• Objects of classes
– Defined within source code,

i.e. function and method
implementation

– Notion class implies set of
objects conforming to the
defined structure

– Carry values for attributes

– Methods are called on objects,
e.g. using notations like
obj.method() or
obj->method()

Schallehn: Data Management for Engineering Applications

class Part

{

 public:

 Part(string n);

 void createNewVersion();

 private:

 string name;

 int version_id;

 ...

};

// Main program

int main()

{

 Part* obj1 = new Part("Wheel");

 Part* obj2 = new Part("Hub");

 ...

 obj1->createNewVersion();

 ...

 return 0;

}

OO: Specilization

• Relationship between classes to
model more specific subsets of
objects with additional properties
and methods

• Inheritance: attributes and
methods defined in superclass
are also defined in subclass (also
referred to as subtyping)

• Polymorphism: wherever objects
of a superclass can be used,
object of any subclass of it can be
used, too

Schallehn: Data Management for Engineering Applications

class Part

{

 public:

 Part(string n);

 void createNewVersion();

 private:

 string name;

 int version_id;

 Date lastModified;

 Engineer* responsibleEngineer;

};

class ManufacturedPart : public Part

{

 private:

 string manufacturingDepartment;

};

class PurchasedPart : public Part

{

 private:

 string vendor;

};

OO and Engineering Data

• Rich semantic modeling suitable to support complex data
structures

• Typical implementation model of engineering applications
– Conceptual Modeling

– Programming and Development

– File Storage

• Some concepts integrated with STEP data models EXPRESS
and EXPRESS-G
– Specialization

– Relationships

• Object-oriented and Object-Relational Databases suitable but
not commonly used for Engineering Data

Schallehn: Data Management for Engineering Applications

XML

• eXtensible Markup Language

– Hierarchical structure of nested elements (tags)

– Elements may have attributes

– Actual data on the leave level

– Mix of content (data) and description (schema, metadata)

• Developed based on SGML (document processing) to exchange any kind of
data on the Web

• Inspired by HTML (also based on SGML), which is only useful to exchange
documents

• Can be considered a neutral text format for files

• Application-specific schemas of valid documents can be defined by
Document Type Definitions (DTD) or XML Shema (XSD)

• Standard software/libraries for XML processing publically available

Schallehn: Data Management for Engineering Applications

XML Example: EAGLE .sch File
<schematic>

 <parts>

 <part name="SUPPLY1" deviceset="GND" device=""/>

 <part name="C1" deviceset="C-EU" device="050-024X044" value="22pF"/>

 </parts>

 <sheets>

 <sheet>

 <instances> <!-- Positions the parts on the board. E. g.: -->

 <instance part="SUPPLY1" gate="GND" x="132.08" y="187.96"/>

 <instance part="C1" x="-50.8" y="200.66" rot="R270"/>

 </instances>

 <nets>

 <net name="N$1" class="0">

 <segment>

 <wire x1="9.44" y1="19.04" x2="8.9" y2="19.04" width="0.15"/>

 <wire x1="8.9" y1="19.04" x2="8.9" y2="20.66" width="0.15"/>

 <wire x1="8.9" y1="20.66" x2="2.4" y2="20.66" width="0.15"/>

 <pinref part="C1" pin="5"/>

 <pinref part="SUPPLY1" pin="1"/>

 </segment>

 </net>

 </nets>

 </sheet>

 </sheets>

</schematic> [Source: Philipp Ludwig]

XML Structure and Data Model

Schallehn: Data Management for Engineering Applications

• Markup language intended to describe structure within documents and
document collections in files or databases

• Data logically represented according to Document Object Model (DOM)
as hierarchy/tree of

• Element nodes (labeled internal nodes)

• One labeled root node (represents document content)

• Text nodes as leaf nodes represent actual data

• Attribute nodes as special sub-nodes with a child text node

• Structure is

• Well-formed: conforms to general XML rules

• Valid: possible nesting of elements, attributes, etc. conform to a
schema defined as Document Type Definition (DTD) or XML
Schema (XS)

XML DOM Example

Schallehn: Data Management for Engineering Applications

Element node

Text node

Attribute node

schematic

parts sheets

part part

name deviceset device

text text text

”SUPPLY1” ”GND” ””

…

…

XML Example: eagle.dtd

• DTD used for schema definition, i.e. valid .sch files

• Small excerpt of eagle.dtd (publically available):

<!ELEMENT schematic (description?, libraries?, attributes?,

 variantdefs?, classes?, parts?, sheets?, errors?)>

<!ATTLIST schematic

 xreflabel %String; #IMPLIED

 xrefpart %String; #IMPLIED

 >

…

<!ELEMENT part (attribute*, variant*)>

<!ATTLIST part

 name %String; #REQUIRED

 library %String; #REQUIRED

 deviceset %String; #REQUIRED

 device %String; #REQUIRED

 technology %String; ""

 value %String; #IMPLIED

 >

XML in Engineering

• Many formats based on XML

• Especially intended for data exchange

• Some examples:

– Collada for interactive 3D applications

– 3DXML for the exchange of geometrical data

– EAGLE board (BRD) and schema (SCH) files for electronic
circuits (see above)

– CAEX general purpose language for the exchange of
engineering data by European consortium

– AutomationML for plant engineering

– …

Schallehn: Data Management for Engineering Applications

JSON

• JavaScript Object Notation

• More recent, “lightweight”
alternative to XML

• Also provides Schema
definition language

• Developed for Web and
Cloud applications

• In Engineering:
– No major usage

– Current development of CAD
JSON export to support web-
based interoperability

Schallehn: Data Management for Engineering Applications

{

 "firstName": "John",

 "lastName": "Smith",

 "age": 25,

 "phoneNumber":

 [

 {

 "number": "212 555-1234"

 },

 {

 "type": "fax",

 "number": "646 555-4567"

 }

]

}

Based on [http://en.wikipedia.org/wiki/JSON]

Conceptual Models

• Used during Conceptual Design
– Early development phase

– Independent of implementation

– Focus on completeness and soundness description of universe of
discourse

• Typically using graphical notation

• Covered here:
– General purpose models:

• Entity Relations Model (ERM or ER Model)

• Unified Modeling Language (UML)

– Specialized model for application areas
• EXPRESS-G for engineering data

Schallehn: Data Management for Engineering Applications

Focus of Conceptual Models

Schallehn: Data Management for Engineering Applications

Requirements
Analysis

Conceptual
Design

Logical Design

Physical
Design

Implementation

Conceptual Models:
ER, UML, EXPRESS-G

Logical Models:
Relational, Object-oriented,
Document-oriented, EXPRESS

Physical Models:
SQL-92, SQL:2011,
C++, Java

The Entity Relationship (ER) Model

• Developed by Peter Chen in 1976

• Commonly used for design of relational databases

• Set of rules for mapping ER concepts to tables

• Several derivatives with more efficient notation, e.g.

– Idef1x

– Crows foot/Barker’s notation

• Several extension, to introduce more powerful (e.g.
object-oriented) concepts

Schallehn: Data Management for Engineering Applications

ER Model: Basic Concepts

• Entity types (rectangles): represent sets of real-world entities with
common attributes

• Attributes (ovals or rounded boxes): hold property values of entities, keys
(underlined) as identifying attributes

• Relationship types (diamond shaped boxes): possible relationship
between instances of entity types

Schallehn: Data Management for Engineering Applications

Part Supplied
by

PartID

Weight

Name

Supplier

SupplierID

Location

Name

ER Concepts: Cardinalities /1

Schallehn: Data Management for Engineering Applications

Teacher offers Lecture
* 1

Teacher offers Lecture
[1,*] [1,1]

Equivalent to:

• Cardinalities: indicate how often instances of entity types might
participate in a certain relations

• Min/max cardinalities or, alternatively but less precise, only maximum
value

• Optional relationships: minimum cardinality is zero

• 1:1, 1:N or N:M relationships (example above: 1:N relationship) as typical
classes of relationships based on cardinalities

ER Concepts: Cardinalities /2

Schallehn: Data Management for Engineering Applications

Student attends Lecture
* *

Student attends Lecture

Equivalent to:

• Example above: N:M relationship

• Unspecified cardinalities indicate default case of optional N:M
relationship

or

Student attends Lecture
[0,*] [0,*]

ER Concepts: Further Relationships

Schallehn: Data Management for Engineering Applications

Person

married to

[0,1]

[0,1]

Building

has

Room

Teacher

offers

Lecture

Room

Self-referential relationships
on the type-level

Relationships expressing
existential dependencies
(weak entity types)

Relationships between more
than two entity types (n-ary
relationships)

[1,*]

[1,1]

Mapping ER Schema to Relational

• Simple rules
– Entity types map to tables

– Attributes map to columns

– Key attributes map to primary key columns

– N:M relationships map to tables with keys of participating entity types
as columns

– 1:1 relationships

• Non-optional: entity types and relationship can be merged into one table

• Optional: map to table with keys of participating entity types as columns

– 1:N relationships

• Non-optional: entity types and relationship can be merged into one table

• Optional: map to table with keys of participating entity types as columns

• Some variance allowed to improve performance, simplicity,
etc.

 Schallehn: Data Management for Engineering Applications

The Unified Modeling Language (UML)

• Object-oriented modeling language/model for general
software engineering

• Developed in mid 1990s as a combination of several
languages/conceptual models

• Contains several diagram types for describing different
aspects of structure and behavior
– Class diagrams

– Object diagrams

– State diagrams

– Sequence diagrams

– Etc.

• Class diagrams useful to describe database or file schemas

Schallehn: Data Management for Engineering Applications

UML Class Diagrams

• Cover basic data model aspects such as ER Model

– Classes entity types

– Attributes and key attributes for classes

– Relationships with cardinalities

• In addition, object-oriented concepts:

– Specialization and inheritance

– Encapsulation

– Methods

Schallehn: Data Management for Engineering Applications

UML Class Diagram Example

Schallehn: Data Management for Engineering Applications

STEP

• STandard for the Exchange of Product model data

• Developed since 1984 by international consortium

• Standardized since 1990s as ISO 10303

• Contains

– General methods for describing data and schemas

– Definitions of generic file formats

– Application-specific methods for engineering domains

Schallehn: Data Management for Engineering Applications

STEP Parts relevant for Data Modeling

• Parts most relevant for data modeling
– 10303-1x Description Methods, e.g.

• 10303-11 EXPRESS and EXPRESS-G

– 10303-2x Implementation Methods, e.g.

• 10303-21 STEP files

• 10303-22 Standard Data Access Interface SDAI

• 10303-23, 24 … SDAI C++, C etc. Language Bindings

• 10303-28 STEP XML

– Further 10303-XX Integrated generic resources

• 10303-42 Geometric and topological representation

• 10303-52 Mesh-based topology

– 10303-2XX Application Protocols
• …

• …

Schallehn: Data Management for Engineering Applications

EXPRESS and EXPRESS-G

• Represent Data Model of STEP Standard

• EXPRESS: textual notation

– Formal notation to describe data structures

• EXPRESS-G: graphical notation

– Easy to understand

– Most concepts of EXPRESSED can be described 1:1, except
for complex constraints

• For storage/implementation mapped to file format
(10303-21) or concrete language (10303-22 ff.)

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Basic Data Types

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Entity Types and Attributes /1

Schallehn: Data Management for Engineering Applications

Entities and Attributes (Remarks)

• Entity types as plain rectangles

• Attributes as relationships to basic types or defined
types

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Defined Types

Schallehn: Data Management for Engineering Applications

EXPRESS: Entity Types and Attributes /1

Schallehn: Data Management for Engineering Applications

SCHEMA Parts;

TYPE Date

 day : INTEGER;

 month : INTEGER;

 year : INTEGER;

WHERE

 WR1: (SELF\day > 0) AND (SELF\day < 32);

 WR1: (SELF\month > 0) AND (SELF\month < 13);

 WR1: (SELF\year > 0);

END TYPE;

ENTITY Part

 name : UNIQUE STRING;

 department : OPTIONAL INTEGER;

 last_modified : Date;

END ENTITY;

…

END SCHEMA;

Defined Types (Remarks)

• Can be used just like basic types

• Defined as

– based on one basic or

– composed of several basic or defined types

• Constraints maybe used to

– Limit domain of values

– Specify any consistency requirement

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Enumeration Data Type

Schallehn: Data Management for Engineering Applications

EXPRESS: Enumeration Data Type

Schallehn: Data Management for Engineering Applications

SCHEMA Parts;

…

ENTITY Engineer

 name : STRING;

 status : ENUMERATION OF (internal,external);

END ENTITY;

…

END SCHEMA;

Enumeration Data Type (Remarks)

• Enumeration is special type for categorical attribute

• Consists of definition of small set of possible values

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Relationships

Schallehn: Data Management for Engineering Applications

EXPRESS Relationships

Schallehn: Data Management for Engineering Applications

SCHEMA Parts;

…

ENTITY Part

 …

 responsibleEngineer : Engineer;

 versions : LIST[1:?] OF PartVersion;

END ENTITY;

ENTITY Engineer

 designedParts : SET[0:?] OF Part;

END ENTITY;

…

END SCHEMA;

Relationships (Remarks)

• Relationships between entity types are directional

• Bidirectional relationships represented as two relationships

• Multiple participation can be represented by Aggregation
types
– List (L): ordered collection

– Set (S): unordered collection without duplicates

– Bag (B) : unordered collection with duplicates

– Array (A): collection of fixed size (ordered, with duplicates)

• Cardinalities with [min:max] notation where ? indicates an
arbitrary cardinality

Schallehn: Data Management for Engineering Applications

EXPRESS-G: Subtyping

Schallehn: Data Management for Engineering Applications

EXPRESS: Subtyping

Schallehn: Data Management for Engineering Applications

SCHEMA Parts;

…

ENTITY Part

 ABSTRACT SUPERTYPE OF

 (ONEOF (ManufacturedPart, PurchasedPart));

 …

END ENTITY;

ENTITY MaufacturedPart

 SUBTYPE OF (Part);

END ENTITY;

ENTITY PurchasedPart

 SUBTYPE OF (Part);

 vendor : STRING;

END ENTITY;

…

END SCHEMA;

Subtyping (Remarks)

• Inheritance (supertype attributes are also defined for
subtype) and polymorphism (substitutability) are
supported

• Multiple inheritance (more than one supertype) is
possible

• Instances may be of several subtypes at the same
time

– Can be constrained by cardinalities, e.g. ONEOF = instance
only of either one of the specified subtypes

Schallehn: Data Management for Engineering Applications

Further EXPRESS-G Constructs

• Schemas as blocks consisting of entities and relations

• Select types to represent alternatives of various (entity or
defined) types to use for relationship

• Methods according to object-oriented concepts

• Derived attributes as calculated properties

• Communication relationships to indicate interactions

• Entity and page references for complex or

• …

Schallehn: Data Management for Engineering Applications

ISO 10303-21: STEP Files

• ASCII-based textual file format for step data

• File extensions .stp or .step for files according to
application protocols

• Commonly used for data exchange in engineering

• Typically structured according to an EXPRESS schema

• Files typically consists of
– ISO-10303-21-declaration in first line

– Short HEADER section containing metadata, including a reference to
the schema (typically STEP Application Protocol)

– DATA section with lines each representing a numbered entity instance
according to schema

Schallehn: Data Management for Engineering Applications

AP 214 EXPRESS Schema (Excerpt)

Schallehn: Data Management for Engineering Applications

(* SCHEMA geometry_schema; *)

 ENTITY cartesian_point

 SUPERTYPE OF (ONEOF(cylindrical_point, polar_point, spherical_point))

 SUBTYPE OF (point);

 coordinates : LIST [1:3] OF length_measure;

 END_ENTITY;

[Source: steptools.com]

Example AP214 .STEP File

Schallehn: Data Management for Engineering Applications

ISO-10303-21;

HEADER;

FILE_DESCRIPTION((''), ' ');

FILE_NAME('pumpHousing.stp', '2004-04-13T21:07:11', ('Tim Olson'), ('CADSoft Solutions

 Inc'), ' ', 'ACIS 12.0', ' ');

FILE_SCHEMA (('AUTOMOTIVE_DESIGN { 1 0 10303 214 2 1 1}'));

ENDSEC;

DATA;

. . .

#3716 = POINT_STYLE(' ', #6060, POSITIVE_LENGTH_MEASURE(1.00000000000000E-06), #6061);

#3717 = CARTESIAN_POINT('', (-1.10591425372267, 3.05319777988191, 0.541338582677165));

#3718 = CURVE_STYLE('', #6062, POSITIVE_LENGTH_MEASURE(1.00000000000000E-06), #6063);

#3719 = LINE('', #6064, #6065);

#3720 = CURVE_STYLE('', #6066, POSITIVE_LENGTH_MEASURE(1.00000000000000E-06), #6067);

#3721 = CIRCLE('', #6068, 1.75849340964528);

#3722 = CURVE_STYLE('', #6069, POSITIVE_LENGTH_MEASURE(1.00000000000000E-06), #6070);

#3723 = CIRCLE('', #6071, 0.540114611464642);

#3724 = SURFACE_STYLE_USAGE(.BOTH., #6072);

#3725 = FACE_OUTER_BOUND('', #6073, .T.);

. . .

ENDSEC;

END-ISO-10303-21;

[Source: Paul Bourke
http://paulbourke.net/dataformats/]

STEP SDAI

• Standard Data Access Interface ISO 10303-22 defines
standard bindings to languages (C, C++, Java) for STEP data
access

• Similar to an API for an RDBMS (ODBC, JDBC) or ODBMS
defines basic functionality such as
– Sessions

– Database connectivity

– Data dictionary

• Defines mappings of EXPRESS types to language constructs, e.

• Not specific to geometrical data → used more often for other
applications

Schallehn: Data Management for Engineering Applications

Further Readings

[1] Ramez Elmasri, Shamkant B. Navathe:
 Fundamentals of Database Systems.
 Addison-Wesley

[2] Owen Jon: STEP – An Introduction. Information
 Geometers, 1997

[3] Douglas A. Schenck, Peter R. Wilson: Information
 Modeling the EXPRESS Way. Oxford Press, 1993.

Schallehn: Data Management for Engineering Applications

